
PUTNAM PRACTICE SET 4

PROF. DRAGOS GHIOCA

Problem 1. Let f : N −→ N be defined as follows: for each positive integer n, we
let f(n) be the sum of the digits of n. Find

f
(
f
(
f
(
20182018

)))
.

Solution. We have that

20182018 < 32018 · 103·2018 < 101009 · 106054 = 107063;

so, 20182018 has at most 7063 digits and therefore,

f
(
20182018

)
< 9 · 7063 < 105.

So, f(n) has at most 5 digits thus proving that

f
(
f
(
20182018

))
< 9 · 5 = 45.

Furthermore, f(n) ≡ n (mod 9); so, since

20182018 ≡ 22018 ≡ 26·336+2 ≡ 22 ≡ 4 (mod 9),

we conclude that

f
(
f
(
20182018

))
∈ {4, 13, 22, 31, 40}.

This means that f
(
f
(
f
(
20182018

)))
= 4.

Problem 2. Let x, y ∈ R such that x+ y = 1. Prove that

xm+1 ·

 n∑
j=0

(
m+ j

j

)
yj

+ yn+1 ·

(
m∑
i=0

(
n+ i

i

)
xi

)
= 1,

for each m,n ∈ N.

Solution. We have, from the generalized binomial expansion for all x satisfying
|x| < 1 that

(1− x)−n−1

=

∞∑
i=0

(−n− 1)(−n− 2) · · · (−n− i)
i!

· (−x)i

=

∞∑
i=0

(
n+ i

i

)
xi.

1
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So, the function hm,n(x) := (1− x)n+1 ·
(∑m

i=0

(
n+i
i

)
xi
)

is an analytic function for

all |x| < 1 and moreover, it is of the form 1 − xm+1 · gm,n(x), where gm,n(x) is
another analytic function. So, the polynomial

P (x) := xm+1 ·

 n∑
j=0

(
m+ j

j

)
(1− x)j

+ (1− x)n+1 ·

(
m∑
i=0

(
n+ i

i

)
xi

)
− 1

is divisible by xm+1. Similarly, arguing this time for the polynomial

Q(y) := (1− y)m+1 ·

 n∑
j=0

(
m+ j

j

)
yj

+ yn+1 ·

(
m∑
i=0

(
n+ i

i

)
(1− y)i

)
− 1,

we get that yn+1 | Q(y). So, in other words, the polynomial P (x) has 0 as a root of
multiplicity at least m+ 1 and has 1 as a root of multiplicity at least n+ 1. Since
deg(P ) ≤ m+ n+ 1, we conclude that P (x) is identically equal to 0, as desired.

Problem 3. For any real numbers a < b and for any continuous function g :
[a, b] −→ R, we denote by G(g) the graph of g(x), i.e., the set

G(g) := {(x, y) : a ≤ x ≤ b and y = g(x)}.

Also, for any function f : [a, b] −→ R and for any c ∈ R, we denote by fc the
function [a+ c, b+ c] −→ R given by fc(x) := f(x− c). Find with proof all the real
numbers c ∈ (0, 1) with the property that there exists some continuous function
f : [0, 1] −→ R (depending on c) such that:

• f(0) = f(1) = 0; and
• G(f) and G(fc) are disjoint.

Solution. First we show that for any n ∈ N, there is no continuous function
f (n) having the desired properties for c = 1

n , i.e., f (n)(0) = f (n)(1) = 0 and also

G
(
f (n)

)
∩ G

(
f
(n)
1
n

)
= ∅. Indeed, if there were such a continuous function f (n),

then we note that f (n)
(
1
n

)
6= 0; so, without loss of generality, we may assume

f (n)
(
1
n

)
> 0. Then, we let hn :

[
1
n , 1
]
−→ R be the function

hn(x) := f (n)(x)− f (n)1
n

(x) = f (n)(x)− f (n)
(
x− 1

n

)
.

Clearly, hn is a continuous function and hn
(
1
n

)
= f (n)

(
1
n

)
− f (n)(0) > 0. Also,

since G
(
f (n)

)
∩ G

(
f
(n)
1
n

)
= ∅, we must have that hn(x) 6= 0 for all x ∈

[
1
n , 1
]

and because hn is continuous (while hn
(
1
n

)
> 0), we get that hn(x) > 0 for all

x ∈
[
1
n , 1
]
. So, f (n)

(
x− 1

n

)
< f (n)(x) for each x ∈

[
1
n , 1
]

and so,

0 = f (n)(1) > f (n)
(
n− 1

n

)
> f (n)

(
n− 2

n

)
> · · · > f (n)(0) = 0,

which is a contradiction. So, indeed, no c of the form 1
n works. On the other

hand, we can show that any other real number c in (0, 1) (which is not of the
form 1

n ) would work, i.e., there would exist some continuous function f (c) with the

properties that f (c)(0) = f (c)(1) = 0 and moreover, G
(
f (c)

)
∩G

(
f
(c)
c

)
= ∅.



PUTNAM PRACTICE SET 4 3

We let n ∈ N with the property that nc < 1 < (n + 1)c; according to our
hypothesis on c, such a positive integer n is uniquely determined. We let r := 1−nc;
this is a real number in (0, c) ⊂ (0, 1). We construct the function f (c) as a piecewise
linear function on the intervals [kc, kc+r] and respectively [kc+r, (k+1)c] for each
k = 0, . . . , n, respectively for each k = 0, . . . , n − 1. So, the function is piecewise
linear and we have that f (c)(kc) = k for each k = 0, . . . , n, while f (c)(kc + r) =

−(n − k) for each k = 0, . . . , n. Now, we claim that f (c)(x) 6= f
(c)
c (x) for each

x ∈ [c, 1], i.e., f (c)(x) 6= f (c)(x− c) for each x ∈ [c, 1]. Indeed, if such a real number
x would exist, then we let k be the unique integer in the set {1, . . . , n} such that
x ∈ [kc, (k+ 1)c). Furthermore, we have two possibilities: either x ∈ [kc, kc+ r) or
x ∈ [kc+ r, (k + 1)c).

Case 1. If x ∈ [kc, kc+ r), then f (c)(x) = k − (x− kc) · nr , while x− c ∈ [(k −
1)c, (k−1)c+r) and so, f (c)(x−c) = k−1−(x−kc) · nr and so, f (c)(x) 6= f (c)(x−c).

Case 2. If x ∈ [kc+ r, (k+ 1)c), then f (c)(x) = k−n+ (x− kc− r) · n+1
c−r , while

x− c ∈ [(k − 1)c+ r, kc) and so, f (c)(x− c) = k − 1− n+ (x− kc− r) · n+1
c−r thus

showing that f (c)(x) 6= f (c)(x− c), as desired.

Problem 4. Find all polynomials P ∈ R[x, y] satisfying the following properties:

(1) there exists some n ∈ N with the property that P (tx, ty) = tnP (x, y) for
all t, x, y ∈ R;

(2) P (a+ b, c) + P (b+ c, a) + P (c+ a, b) = 0 for all a, b, c ∈ R; and
(3) P (1, 0) = 1.

Solution. The first condition tells us that P (x, y) is a homogenous polynomial
in 2 variables; so, it can be written as yn · R(x/y). However, it’s more suitable to
write

P (x, y) = (x+ y)n · P
(

x

x+ y
,

y

x+ y

)
= (x+ y)n ·Q

(
y

x+ y

)
,

where Q(z) := P (1−z, z) is a polynomial of one variable. Then condition (2) yields

Q

(
c

a+ b+ c

)
+Q

(
a

a+ b+ c

)
+Q

(
b

a+ b+ c

)
= 0 as long as a+ b+ c 6= 0.

So, this means that for any u, v ∈ R, we have

Q(u) +Q(v) +Q(1− u− v) = 0.

The above condition yields that Q must be a linear polynomial and furthermore,
Q(t) = 3ct− c for some c ∈ R. Hence, P (x, y) = c(x+ y)n−1(2y − x).

Problem 5. Let {an}n∈N be a strictly increasing sequence of positive integers.
Prove that there exist infinitely many n ∈ N for which there exist (k,m, x, y) ∈ N4

such that an = xak + yam.

Solution. Actually, given any positive integer M , since there exist finitely many
residue classes modulo M , there must exists an infinite subset S ⊆ N such that for
each n, k ∈ S, we have that an ≡ ak (mod M) and therefore, letting M be any
given am, if n > k then there exists some y ∈ N such that an = ak + yam.
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Problem 6. Let 0 < x1 < · · · < xn <
π
2 be real numbers. Prove that:

n−1∑
i=1

sin(2xi)−
n−1∑
i=1

sin(xi − xi+1) <
π

2
+

n−1∑
i=1

sin(xi + xi+1).

Solution. Using trigonometric identities, we are left too prove the following
inequality:

π

2

>

n−1∑
i=1

(sin(2xi)− sin(xi − xi+1)− sin(xi + xi+1))

=

n−1∑
i=1

(2 sin(xi) cos(xi)− 2 sin(xi) cos(xi+1))

= 2 ·
n−1∑
i=1

sin(xi) · (cos(xi)− cos(xi+1)) .

However, for each i = 1, . . . , n−1, sin(xi) · (cos(xi)− cos(xi+1)) represents the area
of a rectangle of height sin(xi) contained in the upper right quadrant of the unit
circle (with one side lying on the x-axis). Since all these rectangles have disjoint
interiors and they’re all contained in a quadrant of area π/4, we obtain the desired
conclusion.


