PUTNAM PRACTICE SET 4

PROF. DRAGOS GHIOCA

Problem 1. Let f : N — N be defined as follows: for each positive integer n, we
let f(n) be the sum of the digits of n. Find

I (f (f (201877))) .

Solution. We have that
90182018 - 32018 132018 - 1()1009 16054 _ 1()7063,

s0, 2018218 has at most 7063 digits and therefore,

f(2018%°"%) < 9. 7063 < 10°.
So, f(n) has at most 5 digits thus proving that

f(f (2018*°'%)) < 9.5 = 45.
Furthermore, f(n) = n (mod 9); so, since

20182018 = 92018 — 96:336+2 — 92 — 4 (;mod 9),

we conclude that
£ (f (2018%°'%)) € {4,13,22,31,40}.

This means that f (f (f (2018201%))) = 4.

Problem 2. Let z,y € R such that = + y = 1. Prove that
m+1 . m+j 7 n+l - n+1 A
(S e (7)) -
j=0 =0
for each m,n € N.

Solution. We have, from the generalized binomial expansion for all x satisfying
|z| <1 that

(1—g) "t

_ Z (_n - 1)(_n _'2) e (_n — Z) i (—1})1’

S

=0

=0
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So, the function hy, ,(z) := (1 —2)" 1 (7 ("F*)2?) is an analytic function for
all |z| < 1 and moreover, it is of the form 1 — z™*! . g, . (x), where gm () is

another analytic function. So, the polynomial

P(z) = 2™ - Z (mj”)u Cap | 41—t (i (”;”)x> 1

Jj=0 i=0

is divisible by %!, Similarly, arguing this time for the polynomial

Qy) = (1— )™+ Z(mf)y +yn+l'<i(”ji)<1y>i>1,

§=0 i=0

we get that y"*! | Q(y). So, in other words, the polynomial P(x) has 0 as a root of
multiplicity at least m + 1 and has 1 as a root of multiplicity at least n 4+ 1. Since
deg(P) < m+n+ 1, we conclude that P(x) is identically equal to 0, as desired.

Problem 3. For any real numbers a < b and for any continuous function g :
[a,b] — R, we denote by G(g) the graph of g(z), i.e., the set

Glg) == {(@,9): a < < b and y = g(x)}.
Also, for any function f : [a,b] — R and for any ¢ € R, we denote by f. the
function [a +¢,b+ ¢] — R given by f.(z) := f(z — ¢). Find with proof all the real
numbers ¢ € (0,1) with the property that there exists some continuous function
f:[0,1] — R (depending on ¢) such that:
e f(0)= f(1) =0; and
e G(f) and G(f.) are disjoint.

Solution. First we show that for any n € N, there is no continuous function
£ having the desired properties for ¢ = %, ie., f™M(0) = f™(1) = 0 and also

G(f™)naG (f(f)) = ). Indeed, if there were such a continuous function f{™,

then we note that f™ (1) # 0; so, without loss of generality, we may assume

i (%) > 0. Then, we let h,, : [%, 1] — R be the function

hale) == £ (@) £(@) = ) ) — £ ( - 1) .

n

Clearly, h,, is a continuous function and hn( ) = f (7) — f™(0) > 0. Also,

1 1

n n
since G (f(")) NG (fin)) = (), we must have that h,(z) # 0 for all z € [%, 1]
and because h,, is continuous (while h,, (1) > 0), we get that h,(z) > 0 for all
T € [%,1]. So, f(m (x — %) < f")(z) for each x € [%, 1] and so,

-1 -2
0= f(1) > ) <”n> S ¢ <”n> s f(0) = 0,
which is a contradiction. So, indeed, no ¢ of the form % works. On the other
hand, we can show that any other real number ¢ in (0,1) (which is not of the
form %) would work, i.e., there would exist some continuous function f(¢) with the

properties that £(¢)(0) = f(¢)(1) = 0 and moreover, G (f(c)) NG (fc(c)) = (.
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We let n € N with the property that nc < 1 < (n + 1)¢; according to our
hypothesis on ¢, such a positive integer n is uniquely determined. We let r := 1 —nc;
this is a real number in (0, c) C (0,1). We construct the function f(¢) as a piecewise
linear function on the intervals [ke, kc+r] and respectively [ke+r, (k4 1)c| for each

=0,...,n, respectively for each k = 0,...,n — 1. So, the function is piecewise
linear and we have that f(¢)(ke¢) = k for each k = 0,...,n, while f(9)(kc+r) =
—(n — k) for each k = 0,...,n. Now, we claim that f()(z) # fc(c) (x) for each
r € [c,1], ie., fO(x) # f(x —c) for each = € [c, 1]. Indeed, if such a real number
x would exist, then we let k& be the unique integer in the set {1,...,n} such that
x € [ke, (k4 1)c). Furthermore, we have two possibilities: either « € [kc¢, ke¢+ 1) or
x € lke+r, (k+ 1)c).

Case 1. If x € [ke, ke + 1), then f9(z) = k — (z — ke) - 2, while z — ¢ € [(k —
De, (k—1)c+r) and so, f(9)(z—c) = k—1—(z—kc)- 2 and so, f()(z) # fO(z—c).

Case 2. If 2 € [ke+7, (k+1)c), then fO(2) =k —n+ (x —ke—1)- 24l while
z—c€[(k—1c+rke) and so, f)(z—c)=k—1—n+ (z—ke—r)- 2L thus
showing that f()(z) # f((z — ¢), as desired.

Problem 4. Find all polynomials P € R|x, y] satisfying the following properties:
(1) there exists some n € N with the property that P(tz,ty) = t"P(x,y) for
all t,z,y € R;
(2) Pla+b,¢)+ P(b+c,a)+ P(c+a,b) =0 for all a,b,c € R; and
(3) P(1,0) =1.

Solution. The first condition tells us that P(x,y) is a homogenous polynomial
in 2 variables; so, it can be written as y™ - R(z/y). However, it’s more suitable to

write
P(x,y):(x+y)"-P<xiy,xiy> :(x+y)"-Q<x_yFy>,

where Q(z) := P(1—z, z) is a polynomial of one variable. Then condition (2) yields

c a b
Q(a—&-b—i—c) +Q<a+b—|—c>+Q<a+b+c> =0aslong asa+ b+ c#0.

So, this means that for any u,v € R, we have
Qu) + Q) + Q1 —u—v)=0.

The above condition yields that ) must be a linear polynomial and furthermore,
Q(t) = 3ct — ¢ for some ¢ € R. Hence, P(z,y) = c(z + y)" " }(2y — ).

Problem 5. Let {a,}nen be a strictly increasing sequence of positive integers.
Prove that there exist infinitely many n € N for which there exist (k,m,z,y) € N*
such that a,, = xag + yam,.

Solution. Actually, given any positive integer M, since there exist finitely many
residue classes modulo M, there must exists an infinite subset S C N such that for
each n,k € S, we have that a, = a; (mod M) and therefore, letting M be any
given a,,, if n > k then there exists some y € N such that a,, = ax + ya,-
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Problem 6. Let 0 <y <--- < x, < 7 be real numbers. Prove that:

n—1 n—1 n—1
. . ™ .
Z sin(2x;) — Z sin(z; — z41) < 5 + Z sin(z; + xiq1)-
i=1 i=1 i=1
Solution. Using trigonometric identities, we are left too prove the following
inequality:

il
2
n—1
> Z (sin(2x;) — sin(x; — xj41) — sin(x; + Ti41))
i=1

n—1
= Z (2sin(x;) cos(z;) — 2sin(x;) cos(i41))

=2 i sin(z;) - (cos(z;) — cos(wiy1)) -

However, for each i = 1,...,n—1, sin(z;) - (cos(x;) — cos(z;+1)) represents the area
of a rectangle of height sin(x;) contained in the upper right quadrant of the unit
circle (with one side lying on the z-axis). Since all these rectangles have disjoint
interiors and they’re all contained in a quadrant of area /4, we obtain the desired
conclusion.



